Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+.

نویسندگان

  • R Y Hsu
  • A S Mildvan
  • G Chang
  • C Fung
چکیده

As determined by EPR, malic enzyme from pigeon liver binds Mn2+ with a half-site stoichiometry of two tight binding sites (KD=6 to 10 mum) per enzyme tetramer and at two to four weak binding sites (KD=0.43 to 1.34 mM). The activation of malic enzyme by Mn2+ at high levels of L-malate shows biphasic kinetics yielding two activator constants for Mn2+. The dissociation constants of Mn2+ for both classes of sites are of the same order as the kinetically determined activator constants of Mn2+, indicating active site binding at both classes of binding sites. The binding of Mn2+ to the tight sites enhances the paramagnetic effect of Mn2+ on 1/T1 of water protons by a factor (epsilon) of 17, while binding at the weak sites yields a smaller epsilon of 11. The coenzymes TPN and TPNH have no effects on epsilon, while the carboxylic acid substrates L-malate and pyruvate and the inhibitors D-malate and oxalate significantly decrease epsilon. TPNH causes a 38-fold tightening of binding of the substrate L-malate to the enzyme-Mn2+ complex, consistent with the previously described highly ordered kinetic scheme, but only a 2-fold tightening of binding of the competitive inhibitor D-malate. The dissociation constant of L-malate from the quaternary E-Mn2+-TPNH-L-malate complex (32 muM) agrees with the Km of L-malate (25 muM), indicating active site binding. The dissociation constants of pyruvate from the ternary E-Mn2+-pyruvate complex (12 mM) and from the quaternary E-Mn2+-TPN-pyruvate complex (20 mM) are similar to the Km of pyruvate (5 mM), also indicating active site binding and a less highly ordered kinetic scheme for the reactions of pyruvate than for those of L-malate. Analysis of the frequency dependence of 1/T1 of water protons indicates that two fast exchanging water ligands remain coordinated to Mn2+ in the binary E-Mn2+ complex. The binding of the substrates L-malate and pyruvate and of the transition state analog oxalate to the E-Mn2+ complex decrease the number of fast exchanging water ligands on Mn2+ by approximately 1, but the binding of D-malate has no significant effect on this parameter, indicating the occlusion or replacement of a water ligand of the enzyme-bound Mn2+ by a properly oriented substituent on C-2 of the substrate. Occlusion rather than replacement of a water ligand by pyruvate is established by studies of 1/T1 of 13COO- and 13CO-enriched pyruvate which indicate second sphere Mn2+ to pyruvate distances of 4.6 A (COO-) and 4.8 A (CO) in the ternary enzyme-Mn2+-pyruvate complex. Formation of the quaternary complex with TPN increases these distances by 0.8 A, indicating the participation of a second sphere enzyme-Mn2+-(H2O)-pyruvate complex in catalysis. Thus, malic enzyme, like five other enzymes which utilize metals to polarize carbonyl groups, forms a second sphere complex with its substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the interactions between Asp141 and Phe236 in the Mn2+-l-malate binding of pigeon liver malic enzyme.

The cytosolic malic enzyme from pigeon liver is very sensitive to the metal-catalysed oxidation systems. Our previous studies using the Cu2+-ascorbate as the oxidation system showed that the enzyme was oxidized and cleaved at several positions, including Asp141. The recently resolved crystal structure of pigeon liver malic enzyme revealed that Asp141 was near to the metal-binding site, but was ...

متن کامل

Involvement of single residue tryptophan 548 in the quaternary structural stability of pigeon cytosolic malic enzyme.

Pigeon cytosolic malic enzyme has a double dimer quaternary structure with three tryptophanyl residues in each monomer distributed in different structural domains. The enzyme showed a three-state unfolding phenomenon upon increasing the urea concentration (Chang, H. C., Chou, W. Y., and Chang, G. G. (2002) J. Biol. Chem. 277, 4663-4671). At urea concentration of 4-4.5 m, where the intermediate ...

متن کامل

Structural studies of the pigeon cytosolic NADP(+)-dependent malic enzyme.

Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both. Structural studies of the human mitoc...

متن کامل

Effects of the sintering temperature on the flux-pinning mechanism and the activation energy of malic-acid doped MgB2

  The flux-pinning mechanism and activation energy of 10 wt % malic acid-doped MgB2 were investigated by measuring of the critical current density and resistivity as a function of magnetic field and temperature. A crossover field, Bsb, was observed from the single vortex to the small vortex bundle pinning regime. For the sintered sample, the temperature dependence of Bsb(T) at low temperature i...

متن کامل

Periodate-oxidized 3-aminopyridine adenine dinucleotide phosphate as a fluorescent affinity label for pigeon liver malic enzyme.

Treatment of 3-aminopyridine adenine dinucleotide phosphate with sodium periodate resulted in oxidation of the ribose linked to 3-aminopyridine ring and cleavage of the dinucleotide into 3-aminopyridine and adenosine moieties. These two moieties were separated by thin layer chromatography and were synergistically bound to pigeon liver malic enzyme (EC 1.1.1.40), causing inactivation of the enzy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 251 21  شماره 

صفحات  -

تاریخ انتشار 1976